Rapid Dissolution of BaSO4 by Macropa, an 18-Membered Macrocycle with High Affinity for Ba2

J Am Chem Soc. 2018 Dec 12;140(49):17071-17078. doi: 10.1021/jacs.8b08704. Epub 2018 Nov 28.

Abstract

Insoluble BaSO4 scale is a costly and time-consuming problem in the petroleum industry. Clearance of BaSO4-impeded pipelines requires chelating agents that can efficiently bind Ba2+, the largest nonradioactive +2 metal ion. Due to the poor affinity of currently available chelating agents for Ba2+, however, the dissolution of BaSO4 remains inefficient, requiring very basic solutions of ligands. In this study, we investigated three diaza-18-crown-6 macrocycles bearing different pendent arms for the chelation of Ba2+ and assessed their potential for dissolving BaSO4 scale. Remarkably, the bis-picolinate ligand macropa exhibits the highest affinity reported to date for Ba2+ at pH 7.4 (log K' = 10.74), forming a complex of significant kinetic stability with this large metal ion. Furthermore, the BaSO4 dissolution properties of macropa dramatically surpass those of the state-of-the-art ligands DTPA and DOTA. Using macropa, complete dissolution of a molar equivalent of BaSO4 is reached within 30 min at room temperature in pH 8 buffer, conditions under which DTPA and DOTA only achieve 40% dissolution of BaSO4. When further applied for the dissolution of natural barite, macropa also outperforms DTPA, showing that this ligand is potentially valuable for industrial processes. Collectively, this work demonstrates that macropa is a highly effective chelator for Ba2+ that can be applied for the remediation of BaSO4 scale.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Barium / chemistry
  • Barium Sulfate / chemistry*
  • Chelating Agents / chemical synthesis
  • Chelating Agents / chemistry*
  • Coordination Complexes / chemical synthesis
  • Crown Ethers / chemical synthesis
  • Crown Ethers / chemistry*
  • Ligands
  • Picolinic Acids / chemical synthesis
  • Picolinic Acids / chemistry*
  • Solubility / drug effects

Substances

  • Chelating Agents
  • Coordination Complexes
  • Crown Ethers
  • Ligands
  • Picolinic Acids
  • Barium
  • Barium Sulfate