Proteomic approaches for cancer epigenetics research

Expert Rev Proteomics. 2019 Jan;16(1):33-47. doi: 10.1080/14789450.2019.1550363. Epub 2018 Nov 27.

Abstract

Introduction: Epigenetic dysregulation drives or supports numerous human cancers. The chromatin landscape in cancer cells is often marked by abnormal histone post-translational modification (PTM) patterns and by aberrant assembly and recruitment of protein complexes to specific genomic loci. Mass spectrometry-based proteomic analyses can support the discovery and characterization of both phenomena. Areas covered: We broadly divide this literature into two parts: 'modification-centric' analyses that link histone PTMs to cancer biology; and 'complex-centric' analyses that examine protein-protein interactions that occur de novo as a result of oncogenic mutations. We also discuss proteomic studies of oncohistones. We highlight relevant examples, discuss limitations, and speculate about forthcoming innovations regarding each application. Expert commentary: 'Modification-centric' analyses have been used to further understanding of cancer's histone code and to identify associated therapeutic vulnerabilities. 'Complex-centric' analyses have likewise revealed insights into mechanisms of oncogenesis and suggested potential therapeutic targets, particularly in MLL-associated leukemia. Proteomic experiments have also supported some of the pioneering studies of oncohistone-mediated tumorigenesis. Additional applications of proteomics that may benefit cancer epigenetics research include middle-down and top-down histone PTM analysis, chromatin reader profiling, and genomic locus-specific protein identification. In the coming years, proteomic approaches will remain powerful ways to interrogate the biology of cancer.

Keywords: Affinity proteomics; cancer; chromatin; epigenetics; histones; middle-down; readers; top-down.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatin / metabolism
  • Epigenesis, Genetic / genetics
  • Histones / metabolism
  • Humans
  • Neoplasms / genetics
  • Neoplasms / metabolism*
  • Proteomics / methods*

Substances

  • Chromatin
  • Histones