Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies

Chem Rec. 2019 May;19(5):908-926. doi: 10.1002/tcr.201800112. Epub 2018 Nov 27.

Abstract

This review gives an overview of the synthesis, surface and electrochemical investigations over ternary nanocomposite of conductive polymers in the development of new supercapacitors. They utilize both Faradaic and non-Faradaic procedures to store charge, leading to higher specific capacitance and energy density, higher cell voltage, longer life cycle and moderated power density. Owing to a unique combination of features such as superb electrical conductivity, corrosion resistance in aqueous electrolytes, highly modifiable nanostructures, long cycle life and the large theoretical specific-surface area, the use of ternary nanocomposites as a supercapacitor electrode material has become the focus of a significant amount of current scientific researches in the field of energy storage devices. In these nanocomposites, graphene not only can be utilized to provide a substrate for growing nanostructured polymers in a polymer-carbon nanocomposite structure in order to overcome the insulating nature of conductive polymers at dedoped states, but also is capable of providing a platform for the decoration of metal oxide nanoparticles to avoid their agglomeration. In this regard, synthesis, characterization and performance of different ternary nanocomposites of conductive polymer/graphene/metal oxide are discussed in detail. These remarkable results demonstrate the exciting commercial potential for high performance, environmentally friendly and low-cost electrical energy storage devices based on ternary nanocomposite of conductive polymer/graphene/metal oxide.

Keywords: Conductive polymer; graphene; metal oxide; pseudocapacitor; ternary nanocomposite.

Publication types

  • Review