An emerging viral pathogen truncates population age structure in a European amphibian and may reduce population viability

PeerJ. 2018 Nov 16:6:e5949. doi: 10.7717/peerj.5949. eCollection 2018.

Abstract

Infectious diseases can alter the demography of their host populations, reducing their viability even in the absence of mass mortality. Amphibians are the most threatened group of vertebrates globally, and emerging infectious diseases play a large role in their continued population declines. Viruses belonging to the genus Ranavirus are responsible for one of the deadliest and most widespread of these diseases. To date, no work has used individual level data to investigate how ranaviruses affect population demographic structure. We used skeletochronology and morphology to evaluate the impact of ranaviruses on the age structure of populations of the European common frog (Rana temporaria) in the UK. We compared ecologically similar populations that differed most notably in their historical presence or absence of ranavirosis (the acute syndrome caused by ranavirus infection). Our results suggest that ranavirosis may truncate the age structure of R. temporaria populations. One potential explanation for such a shift might be increased adult mortality and subsequent shifts in the life history of younger age classes that increase reproductive output earlier in life. Additionally, we constructed population projection models which indicated that such increased adult mortality could heighten the vulnerability of frog populations to stochastic environmental challenges.

Keywords: Amphibians; Demography; Disease; Environmental stochasticity; Ranavirus.

Grants and funding

This work was supported by a Natural Environment Research Council PhD Studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.