Isolation and characterization of cells derived from human epithelial rests of Malassez

Odontology. 2019 Jul;107(3):291-300. doi: 10.1007/s10266-018-0397-7. Epub 2018 Nov 26.

Abstract

The epithelial rests of Malassez (ERMs) might represent a valuable source of oral epithelial cells with stem cell properties. The purpose of this study was to isolate and characterize cells derived from human ERM, and compare them with cells derived from matched normal oral mucosa (NOM). Matched tissue specimens of the periodontal ligament of extracted tooth and NOM were collected. Cells were isolated in culture, then characterized by immunohistochemistry and flow cytometry for expression of pancytokeratin, ESA, PDGFRB, CD31 and CD44. 3D organotypic cultures were constructed by growing epithelial cells on top of fibroblast-populated collagen gels. Both ERM and NOM-isolated cells expressed the markers of epithelial lineage (ESA and pancytokeratin), and to some extent PDGFR, an indicator of a more mesenchymal phenotype, but not the endothelial cell marker CD31. Cells with epithelial morphology were isolated from periodontium of cervical, middle and apical parts of the root, but contained a significantly lower percentage of ESA and pancytokeratin-positive cells than when isolating cells from NOM (p < 0.001). ERM cells expressed a significantly higher percentage of the stem cell-related molecule CD44 (cervical 92.93 ± 0.25%, middle 93.8 ± 0.26%, apical 94.36 ± 0.41%) than cells isolated from NOM (27.8 ± 1.47%, p < 0.001). When grown in 3D organotypic cultures and in collagen gels, ERM cells formed a less differentiated epithelium than NOM cells, but expressing pancytokeratin and vimentin. In conclusion, epithelial cells could be isolated from human periodontium and grown in culture; their in vitro characterization indicates that they have a less differentiated phenotype compared with cells derived from normal oral epithelium.

Keywords: Human; Immunohistochemistry; Oral mucosa; Periodontal ligament; Rests of Malassez.

MeSH terms

  • Cells, Cultured
  • Epithelial Cells
  • Fibroblasts
  • Humans
  • Periodontal Ligament*
  • Rest*