SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1

J Bacteriol. 2019 Jan 28;201(4):e00606-18. doi: 10.1128/JB.00606-18. Print 2019 Feb 15.

Abstract

Dimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in Pseudomonas aeruginosa PAO1. First, results from cell growth experiments showed that deletion of either sfnR2 or sfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability of P. aeruginosa PAO1 to use DMSP, DMS, DMSO, and DMSO2 as sulfur sources. Deletion of the sfnR1 or msuEDC genes, which encode a MSA desulfurization pathway, did not abolish the growth of P. aeruginosa PAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that the msuEDC-sfnR1 operon and the sfnG gene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression of sfnR2 is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of the msuEDC-sfnR1 operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression of msuEDC-sfnR1, sfnG, and other target genes involved in DMS-related metabolism in P. aeruginosa PAO1.IMPORTANCE Dimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, including Pseudomonas, Xanthomonas, and Azotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism in P. aeruginosa PAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.

Keywords: Pseudomonas; RpoN; SfnR; dimethyl sulfide; dimethyl sulfone; dimethyl sulfoxide; enhancer-binding protein; methanesulfonate; sulfur limitation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Gene Deletion
  • Gene Expression Regulation, Bacterial*
  • Protein Binding
  • Pseudomonas aeruginosa / genetics*
  • Pseudomonas aeruginosa / growth & development
  • Pseudomonas aeruginosa / metabolism*
  • Sulfides / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Sulfides
  • Transcription Factors
  • dimethyl sulfide