Patient-derived tumor immune microenvironments in patient-derived xenografts of lung cancer

J Transl Med. 2018 Nov 26;16(1):328. doi: 10.1186/s12967-018-1704-3.

Abstract

Background: Because patient-derived xenografts (PDXs) are grown in immunodeficient mouse strains, PDXs are regarded as lacking an immune microenvironment. However, whether patients' immune cells co-exist in PDXs remains uncharacterized.

Methods: We cultured small pieces of lung PDX tissue in media containing human interleukin-2 and characterized the proliferated lymphocytes by flow cytometric assays with antibodies specific for human immune cell surface markers. Presence of immune cells in PDXs was also determined by immunohistochemical staining.

Results: Human tumor-infiltrating lymphocytes (TILs) were cultured from nine of 25 PDX samples (36%). The mean time of PDX growth in immunodeficient mice before obtaining TILs in culture was 113 days (range 63-292 days). The TILs detected in PDXs were predominantly human CD8+ T cells, CD4+ T cells, or CD19+ B cells, depending on cases. DNA fingerprint analysis showed that the TILs originated from the same patients as the PDXs. Further analysis of two PDX-derived CD8+ T cells showed that they were PD-1-, CD45RO+, and either CD62L+ or CD62L-, suggesting they were likely memory T cells. Immunohistochemical staining showed that human T cells (CD8+ or CD4+), B cells (CD19+), and macrophages (CD68+) were present in stroma or intraepithelial cancer structures and that human PD-L1 was expressed in stromal cells. Moreover, the patient-derived immune cells in PDX can be passaged to the F2 generation and may migrate to spleens of PDX-bearing mice.

Conclusions: Patient-derived immune cells co-exist in early passages of PDXs in some lung cancer PDX models. The CD8+ cells from PDXs were likely memory T cells. These results suggest that PDXs can be used for evaluating the functionality of immune components in tumor microenvironments.

Keywords: Immunotherapy; Lung cancer; Patient-derived xenografts (PDX); Tumor microenvironment; Tumor models; Tumor-infiltrating lymphocytes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD8-Positive T-Lymphocytes / immunology
  • Cell Movement
  • Humans
  • Immunologic Memory
  • Lung Neoplasms / immunology*
  • Lung Neoplasms / pathology*
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Stromal Cells / pathology
  • Tumor Microenvironment / immunology*
  • Xenograft Model Antitumor Assays*