Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Nanoparticle Dispersion for Organic Solar Cell Applications

ACS Appl Mater Interfaces. 2018 Dec 19;10(50):44116-44125. doi: 10.1021/acsami.8b15589. Epub 2018 Dec 10.

Abstract

Aqueous dispersions of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) nanoparticles (NPs) have been fabricated using a thiophene-based surfactant 2-(3-thienyl)ethyloxybutylsulfonate sodium salt (TEBS) for the first time via the mini-emulsion process. The use of TEBS resulted in a stable colloidal dispersion of P3HT:PCBM NPs, of which the effect of various fabrication parameters is investigated. The fabricated NPs were characterized by dynamic light scattering, scanning electron microscopy, UV-visible spectroscopy, contrast-variation small and ultra-small angle neutron scattering, and cyclic voltammetry. The internal structure and electrochemical performance of TEBS-stabilized P3HT:PCBM NPs were compared to those of sodium dodecyl sulfate-stabilized core-shell (PCBM-P3HT) NPs at the same surfactant concentration. Neutron scattering and cyclic voltammetry results reveal a homogeneous distribution of small de-mixed P3HT and PCBM domains in the internal structure of TEBS-stabilized P3HT:PCBM NPs, reminiscent of cast film. Moreover, electron microscopy images show evidence of diffused NP surface/interface upon drying (without annealing), which indicates that the thiophene-containing TEBS may improve compatibility and film-forming properties of fabricated P3HT:PCBM NPs, and consequently be more suited for conventional film-processing methods for organic solar cell applications.

Keywords: P3HT; PCBM; TEBS; aqueous nanoparticle dispersion; organic solar cells; small-angle neutron scattering.