Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities

Nanoscale. 2018 Dec 21;10(47):22357-22361. doi: 10.1039/c8nr06545d. Epub 2018 Nov 26.

Abstract

Exact understanding of the plasmon response of aluminum (Al) nanostructures in deep subwavelengths is critical for the design of Al based plasmonic applications, such as the emission control of quantum dots and surface-enhanced resonance Raman scattering in the ultraviolet (UV) range. Here, the plasmonic properties of open triangle cavities patterned by a focused ion beam in single-crystal bulk Al were explored using cathodoluminescence. The resonant modes were determined by experimental spectra and deep subwavelength real-space mode patterns ranging from the visible to the UV, which agreed well with full-wave electromagnetic simulations. The dispersion relation of the cavity modes was consistent with that at the interface between Al and vacuum, showing strong electromagnetic field confinement in the cavities. Open Al triangle cavities provided room for the interaction between optical emitters and confined electromagnetic fields, paving the way for plasmonic devices for a variety of applications, such as plasmonic light-emitting devices or nanolasers in the UV range.