Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: Analytical modeling and simulation

Micron. 2019 Feb:117:47-54. doi: 10.1016/j.micron.2018.11.003. Epub 2018 Nov 16.

Abstract

Bringing ultrafast (nanosecond and below) temporal resolution to transmission electron microscopy (TEM) has historically been challenging. Despite significant recent progress in this direction, it remains difficult to achieve sub-nanosecond temporal resolution with a single electron pulse, in real-time (i.e., duration in which the event occurs) imaging. To address this limitation, here, we propose a methodology that combines laser-assisted TEM with computational imaging methodologies based on compressed sensing (CS). In this technique, a two-dimensional (2D) transient event [i.e. (x,y) frames that vary in time] is recorded through a CS paradigm, which consists of spatial encoding, temporal shearing via streaking, and spatiotemporal integration of an electron pulse. The 2D image generated on a camera is used to reconstruct the datacube of the ultrafast event, with two spatial and one temporal dimensions, via a CS-based image reconstruction algorithm. Using numerical simulation, we find that the reconstructed results are in good agreement with the ground truth, which demonstrates the applicability of CS-based computational imaging methodologies to laser-assisted TEM. Our proposed method, complementing the existing ultrafast stroboscopic and nanosecond single-shot techniques, opens up the possibility for single-shot, real-time, spatiotemporal imaging of irreversible structural phenomena with sub-nanosecond temporal resolution.

Keywords: Compressed sensing; Streak imaging; Transmission electron microscopy; Ultrafast imaging.

Publication types

  • Research Support, Non-U.S. Gov't