Periodically poled ridge waveguides in KTP for second harmonic generation in the UV regime

Opt Express. 2018 Oct 29;26(22):28827-28833. doi: 10.1364/OE.26.028827.

Abstract

Waveguide circuits play a key role in modern integrated optics and provide an appealing approach to scalability in quantum optics. We report on periodically poled ridge waveguides in z-cut potassium titanyl phosphate (KTiOPO4 or KTP), a material that has recently received growing interest due to its unique dispersion properties. Ridges were defined in surface-near rubidium-exchanged KTP by use of a precise diamond-blade dicing saw. We fabricated single-mode ridge waveguides at around 800 nm which exhibit widths of 1.9-3.2 μm and facilitated type-II second harmonic generation from 792 nm to 396 nm with high efficiency of 6.6 %/W·cm2. Temperature dependence of the second harmonic process was found to be 53 pm/K. The low temperature dependence and high nonlinear conversion efficiency make our waveguides ideally suited for future operations in classical nonlinear integrated optics and integrated quantum networking applications.