Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films

J Nanosci Nanotechnol. 2019 Mar 1;19(3):1289-1294. doi: 10.1166/jnn.2019.16180.

Abstract

In these days, we are facing emerging energy crisis due to depletion of fossil fuels. Therefore, renewable energy which is based on wind energy, mechanical force energy, microwave energy and vibrations energy have attracted a lot of attentions. Piezoelectric energy harvesting is one of the promising renewable energy sources. As the use portable electronic devices increases, the need for portable renewable energy sources further increases. Especially, piezoelectric materials can be the best selection due to their robust properties. In this research, piezoelectric composites were prepared and investigated for piezoelectric energy harvesting applications. In this study, two types of flexible energy harvesters, 0.36BS-0.64PT-PVDF composite and PVDF film, were prepared and analyzed. Due to its high Curie temperature and low lead content, BS-PT is expected to be a substitute for PZT in the near future. The composite materials based on the PVDF and 0.36BS-0.64PT film showed higher open circuit voltage (0.73 V) than PVDF film (0.49 V). Also, the stored voltage of 0.36BS-0.64PT-PVDF composite film was 330 nJ which is 5.68 times higher than 58 nJ for PVDF films. By introducing the piezoelectric BS-PT ceramics, 0.36BS-0.64PT-PVDF composite film shows the enhanced performance such as open circuit voltage, energy and dielectric constant compared with those of PVDF materials. It seems that 0.36BS-0.64PT-PVDF composite film is more suitable for flexible energy device.