Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors

Appl Opt. 2018 Nov 1;57(31):9381-9387. doi: 10.1364/AO.57.009381.

Abstract

The paper presents the results of an experimental study of the dynamic characteristics of the laser fragmentation/laser-induced fluorescence (LF/LIF) effects in nitrobenzene vapors under the separate initiation of processes of photofragmentation and fluorescence of fragments by nanosecond laser pulses. It is shown that, due to the inertia of the dissociation mechanism of nitrobenzene molecules, the process of the fragments' formation continues even after letup of excitation. The highest concentration of fragments is reached in a time several times greater than the standard fragmentation pulse duration of 10 ns. A kinetic model is presented that allows one to trace the temporal dynamics of the LF/LIF process of nitrobenzene vapors under separate excitation. A good agreement between the experimental data and the results of calculation indicates the adequacy of application of the developed kinetic model for describing the LF/LIF process. The information obtained in the experiment made it possible to clarify the values of the rate constants of the nitrobenzene dissociation.