Optical interconnects based on high-contrast all-dielectric nano-post arrays

Appl Opt. 2018 Oct 10;57(29):8664-8672. doi: 10.1364/AO.57.008664.

Abstract

In this paper, we present a compact solution for optical interconnects in optoelectronic integrated neural networks using high-contrast all-dielectric nano-post arrays. The nano-post arrays are made of amorphous silicon, which has a high refractive index and high transmittance in the near infrared. The radius of each post is changed to generate different phase delays. Deflection and convergence of the light are realized by proper design of the phase profile of the nano-post array. Connection efficiencies are calculated by numerical simulations and compared with those of zone plate interconnects. Simulation results show that the proposed nano-post arrays can have superior performance over zone plates in applications that require short focal length and high efficiency.