Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy

Biomed Opt Express. 2018 Oct 12;9(11):5400-5418. doi: 10.1364/BOE.9.005400. eCollection 2018 Nov 1.

Abstract

In pharmacokinetic studies of topical drugs, fluorescence microscopy methods can enable the direct visualization and quantification of fluorescent drugs within the skin. One potential limitation of this approach, however, is the strong endogenous fluorescence of skin tissues that makes straightforward identification of specific drug molecules challenging. To study this effect and quantify endogenous skin fluorescence in the context of topical pharmacokinetics, an integrating sphere-based screening tool was designed to collect fluorescence yield data from human skin specimens. Such information could be utilized to select specific donors in the investigation of drug uptake and distribution. Results indicated human facial skin specimens from a group of more than 35 individuals exhibited an at least 6-fold difference in endogenous fluorescence. In visualizing drug distributions, the negative impact of autofluorescence could be exacerbated in cases where there are overlapping spatial distributions or spectral emission profiles between endogenous fluorophores and the exogenous fluorophore of interest. We demonstrated the feasibility of this approach in measuring the range of tissue endogenous fluorescence and selecting specimens for the study of drug pharmacokinetics with fluorescence microscopy.