Three-dimensional (3D) morphology of Sansha Yongle Blue Hole in the South China Sea revealed by underwater remotely operated vehicle

Sci Rep. 2018 Nov 20;8(1):17122. doi: 10.1038/s41598-018-35220-x.

Abstract

The Sansha Yongle Blue Hole (SYBH) is the deepest blue hole found anywhere to date. Study of the SYBH can provide insight into the interactions between hole wall morphology and many geological/hydrological mechanisms. A comprehensive investigation of the SYBH was carried out for the first time in 2017 using a professional-grade underwater remotely operated vehicle (ROV) to obtain accurate depth and three-dimensional (3D) topographic data. The SYBH resembles a ballet dancer's shoe and has a volume of ~499609 m3. The observed deepest portion of the SYBH is at 301.19 m below the local 10-year mean sea level. The cave bottom laterally deviates from its entrance by 118 m at an azimuth of 219 degrees. The cave entrance is shaped like a comma and has an average width of 130 m; the widest part is 162.3 m wide, while the narrowest part is 26.2 m wide and is at 279 mbsl (meters below sea level). The 3D topography of the SYBH and underwater photography revealed two large transitions at ~76 to 78 mbsl and at 158 mbsl, indicating that the initiation of the blue hole was likely a step wise process and that the hole wall morphology was subsequently remolded through a paleo-sea level stillstand (at or near Younger Dryas). The topographic data also indicated that the blue hole is situated within an isolated environment with no water or material exchange with the outside open sea.