Dual Role of the C-Terminal Domain in Osmosensing by Bacterial Osmolyte Transporter ProP

Biophys J. 2018 Dec 4;115(11):2152-2166. doi: 10.1016/j.bpj.2018.10.023. Epub 2018 Nov 2.

Abstract

ProP is a member of the major facilitator superfamily, a proton-osmolyte symporter, and an osmosensing transporter. ProP proteins share extended cytoplasmic carboxyl terminal domains (CTDs) implicated in osmosensing. The CTDs of the best characterized, group A ProP orthologs, terminate in sequences that form intermolecular, antiparallel α-helical coiled coils (e.g., ProPEc, from Escherichia coli). Group B orthologs lack that feature (e.g., ProPXc, from Xanthomonas campestris). ProPXc was expressed and characterized in E. coli to further elucidate the role of the coiled coil in osmosensing. The activity of ProPXc was a sigmoid function of the osmolality in cells and proteoliposomes. ProPEc and ProPXc attained similar activities at the same expression level in E. coli. ProPEc transports proline and glycine betaine with comparable high affinities at low osmolality. In contrast, proline weakly inhibited high-affinity glycine-betaine uptake via ProPXc. The KM for proline uptake via ProPEc increases dramatically with the osmolality. The KM for glycine-betaine uptake via ProPXc did not. Thus, ProPXc is an osmosensing transporter, and the C-terminal coiled coil is not essential for osmosensing. The role of CTD-membrane interaction in osmosensing was examined further. As for ProPEc, the ProPXc CTD co-sedimented with liposomes comprising E. coli phospholipid. Molecular dynamics simulations illustrated association of the monomeric ProPEc CTD with the membrane surface. Comparison with the available NMR structure for the homodimeric coiled coil formed by the ProPEc-CTD suggested that membrane association and homodimeric coiled-coil formation by that peptide are mutually exclusive. The membrane fluidity in liposomes comprising E. coli phospholipid decreased with increasing osmolality in the range relevant for ProP activation. These data support the proposal that ProP activates as cellular dehydration increases cytoplasmic cation concentration, releasing the CTD from the membrane surface. For group A orthologs, this also favors α-helical coiled-coil formation that stabilizes the transporter in an active form.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Betaine / metabolism*
  • Biological Transport
  • Biosensing Techniques*
  • Cell Membrane / metabolism*
  • Dimerization
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Mutagenesis, Site-Directed
  • Mutation
  • Osmolar Concentration
  • Proline / metabolism*
  • Protein Conformation
  • Protein Domains
  • Sequence Homology
  • Substrate Specificity
  • Symporters / chemistry
  • Symporters / genetics
  • Symporters / metabolism*

Substances

  • Escherichia coli Proteins
  • ProP protein, E coli
  • Symporters
  • Betaine
  • Proline