Subcellular localisation of an endoplasmic reticulum-plasma membrane tethering factor, SYNAPTOTAGMIN 1, is affected by fluorescent protein fusion

Plant Signal Behav. 2018;13(12):e1547577. doi: 10.1080/15592324.2018.1547577. Epub 2018 Nov 16.

Abstract

Membrane contact sites (MCS) have increasingly received attention because of their general role in a number of important cellular processes. SYNAPTOTAGMIN 1 (SYT1) is a tethering factor connecting the endoplasmic reticulum (ER) and the plasma membrane (PM) in plant cells. Confocal microscopy using fluorescent protein fusion is an indispensable tool for studying protein localisation and functions. However, several studies have reported that fluorescent protein dimerisation affects the subcellular localisation of proteins tagged by the fluorescent protein. Here, we investigate the effects of fluorescent protein dimerisation by comparing the subcellular localisation of SYT1 fused with a synthetic GFP (SYT1-sGFP) and SYT1 fused with a monomeric GFP (SYT1-mGFP). SYT1-mGFP was confined to specific domains in the ER, whereas SYT1-sGFP spread along the ER when transiently overexpressed. SYT1-localised regions were suggested to correspond to ER-PM contact sites because of its immobility. Similar results were obtained in the transgenic Arabidopsis, even though SYT1-sGFP and SYT1-mGFP were expressed at comparable levels. It is suggested that SYT1-mGFP more accurately reproduced SYT1 localisation in intact cells because the proportion of persistent area in the ER was more similar between the wild type and the plant expressing SYT1-mGFP than between the wild type and the plant expressing SYT1-sGFP. Taken together, these results suggest that the fusion of sGFP makes SYT1-sGFP form excessive ER-PM contact sites in the ER.

Keywords: ER-plasma membrane contact site; Fluorescent protein.

Grants and funding

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [grant number; KI, 16J00424; KT, 26711017 and 18K06283].