Preparation of Hydrogen Peroxide Sensitive Nanofilms by a Layer-by-Layer Technique

Nanomaterials (Basel). 2018 Nov 15;8(11):941. doi: 10.3390/nano8110941.

Abstract

H₂O₂-sensitive nanofilms composed of DNA and hemin-appended poly(ethyleneimine) (H-PEI) were prepared by a layer-by-layer deposition of DNA and H-PEI through an electrostatic interaction. The (H-PEI/DNA)₅ film was decomposed by addition of 10 mM H₂O₂. H₂O₂-induced decomposition was also confirmed in the hemin-containing (PEI/DNA)₅ in which hemin molecules were adsorbed by a noncovalent bond to the nanofilm. On the other hand, the (PEI/DNA)₅ film containing no hemin and the (H-PEI/PSS)₅ film using PSS instead of DNA did not decompose even with 100 mM H₂O₂. The mechanism of nanofilm decomposition was thought that more reactive oxygen species (ROS) was formed by reaction of hemin and H₂O₂ and then the ROS caused DNA cleavage. As a result (H-PEI/DNA)₅ and hemin-containing (PEI/DNA)₅ films were decomposed. The decomposition rate of these nanofilms were depended on concentration of H₂O₂, modification ratio of hemin, pH, and ionic strength.

Keywords: hydrogen peroxide response; layer-by-layer; multilayer thin film; nanofilm; stimuli-sensitive.