Expression of hyaluronan synthases upregulated by thyroid hormone is involved in intestinal stem cell development during Xenopus laevis metamorphosis

Dev Genes Evol. 2018 Dec;228(6):267-273. doi: 10.1007/s00427-018-0623-x. Epub 2018 Nov 14.

Abstract

During amphibian intestinal remodeling, thyroid hormone (TH) induces adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian one. We have previously shown that hyaluronan (HA) is newly synthesized and plays an essential role in the development of the stem cells via its major receptor CD44 in the Xenopus laevis intestine. We here focused on HA synthase (HAS) and examined how the expression of HAS family genes is regulated during natural and TH-induced metamorphosis. Our quantitative RT-PCR analysis indicated that the mRNA expression of HAS2 and HAS3, but not that of HAS1 and HAS-rs, a unique Xenopus HAS-related sequence, is upregulated concomitantly with the development of adult epithelial primordia consisting of the stem/progenitor cells during the metamorphic climax. In addition, our in situ hybridization analysis indicated that the HAS3 mRNA is specifically expressed in the adult epithelial primordia, whereas HAS2 mRNA is expressed in both the adult epithelial primordia and nearby connective tissue cells during this period. Furthermore, by treating X. laevis tadpoles with 4-methylumbelliferone, a HA synthesis inhibitor, we have experimentally shown that inhibition of HA synthesis leads to suppression of TH-upregulated expression of leucine-rich repeat-containing G protein-coupled 5 (LGR5), an intestinal stem cell marker, CD44, HAS2, HAS3, and gelatinase A in vivo. These findings suggest that HA newly synthesized by HAS2 and/or HAS3 is required for intestinal stem cell development through a positive feedback loop and is involved in the formation of the stem cell niche during metamorphosis.

Keywords: Adult stem cell; Hyaluronan synthase; Intestinal remodeling; Thyroid hormone; Xenopus laevis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Gene Expression Regulation, Developmental
  • Hyaluronan Synthases / metabolism*
  • Intestines / cytology*
  • Intestines / embryology
  • Metamorphosis, Biological
  • Stem Cells / cytology*
  • Thyroid Hormones / metabolism*
  • Up-Regulation
  • Xenopus Proteins / metabolism*
  • Xenopus laevis / growth & development*
  • Xenopus laevis / metabolism

Substances

  • Thyroid Hormones
  • Xenopus Proteins
  • HAS3 protein, Xenopus
  • Has2 protein, Xenopus
  • Hyaluronan Synthases