Past-in-the-Future. Peak detection improves targeted mass spectrometry imaging

Anal Chim Acta. 2018 Dec 26:1042:1-10. doi: 10.1016/j.aca.2018.06.067. Epub 2018 Jun 28.

Abstract

Mass spectrometry imaging is a valuable tool for visualizing the localization of drugs in tissues, a critical issue especially in cancer pharmacology where treatment failure may depend on poor drug distribution within the tumours. Proper preprocessing procedures are mandatory to obtain quantitative data of drug distribution in tumours, even at low intensity, through reliable ion peak identification and integration. We propose a simple preprocessing and quantification pipeline. This pipeline was designed starting from classical peak integration methods, developed when "microcomputers" became available for chromatography, now applied to MSI. This pre-processing approach is based on a novel method using the fixed mass difference between the analyte and its 5 d derivatives to set up a mass range gate. We demonstrate the use of this pipeline for the evaluating the distribution of the anticancer drug paclitaxel in tumour sections. The procedure takes advantage of a simple peak analysis and allows to quantify the drug concentration in each pixel with a limit of detection below 0.1 pmol mm-2 or 10 μg g-1. Quantitative images of paclitaxel distribution in different tumour models were obtained and average paclitaxel concentrations were compared with HPLC measures in the same specimens, showing <20% difference. The scripts are developed in Python and available through GitHub, at github.com/FrancescaFalcetta/Imaging_of_drugs_distribution_and_quantifications.git.

Keywords: Imaging data analysis; Mass spectrometry images; Preprocessing; Quantitative imaging; Tumour drug distribution.

MeSH terms

  • Antineoplastic Agents, Phytogenic / analysis*
  • Antineoplastic Agents, Phytogenic / pharmacokinetics
  • Chromatography, High Pressure Liquid
  • Humans
  • Mass Spectrometry / methods*
  • Neoplasms / metabolism*
  • Paclitaxel / analysis*
  • Paclitaxel / pharmacokinetics

Substances

  • Antineoplastic Agents, Phytogenic
  • Paclitaxel