Agmatine preferentially antagonizes GluN2B-containing N-methyl-d-aspartate receptors in spinal cord

J Neurophysiol. 2019 Feb 1;121(2):662-671. doi: 10.1152/jn.00172.2018. Epub 2018 Nov 14.

Abstract

The role of the N-methyl-d-aspartate receptor (NMDAr) as a contributor to maladaptive neuroplasticity underlying the maintenance of chronic pain is well established. Agmatine, an NMDAr antagonist, has been shown to reverse tactile hypersensitivity in rodent models of neuropathic pain while lacking the side effects characteristic of global NMDAr antagonism, including sedation and motor impairment, indicating a likely subunit specificity of agmatine's NMDAr inhibition. The present study assessed whether agmatine inhibits subunit-specific NMDAr-mediated current in the dorsal horn of mouse spinal cord slices. We isolated NMDAr-mediated excitatory postsynaptic currents (EPSCs) in small lamina II dorsal horn neurons evoked by optogenetic stimulation of Nav1.8-containing nociceptive afferents. We determined that agmatine abbreviated the amplitude, duration, and decay constant of NMDAr-mediated EPSCs similarly to the application of the GluN2B antagonist ifenprodil. In addition, we developed a site-specific knockdown of the GluN2B subunit of the NMDAr. We assessed whether agmatine and ifenprodil were able to inhibit NMDAr-mediated current in the spinal cord dorsal horn of mice lacking the GluN2B subunit of the NMDAr by analysis of electrically evoked EPSCs. In control mouse spinal cord, agmatine and ifenprodil both inhibited amplitude and accelerated the decay kinetics. However, agmatine and ifenprodil failed to attenuate the decay kinetics of NMDAr-mediated EPSCs in the GluN2B-knockdown mouse spinal cord. The present study indicates that agmatine preferentially antagonizes GluN2B-containing NMDArs in mouse dorsal horn neurons. NEW & NOTEWORTHY Our study is the first to report that agmatine preferentially antagonizes the GluN2B receptor subunit of the N-methyl-d-aspartate (NMDA) receptor in spinal cord. The preferential targeting of GluN2B receptor is consistent with the pharmacological profile of agmatine in that it reduces chronic pain without the motor side effects commonly seen with non-subunit-selective NMDA receptor antagonists.

Keywords: -arginine; agmatine; arginine decarboxylase; glutamate; neuroplasticity; polyamine.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Agmatine / pharmacology*
  • Animals
  • Excitatory Amino Acid Agonists / pharmacology*
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nociception
  • Piperidines / pharmacology
  • Receptors, N-Methyl-D-Aspartate / agonists*
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Sensory Receptor Cells / drug effects
  • Sensory Receptor Cells / metabolism
  • Sensory Receptor Cells / physiology
  • Spinal Cord Dorsal Horn / drug effects*
  • Spinal Cord Dorsal Horn / metabolism
  • Spinal Cord Dorsal Horn / physiology

Substances

  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • NR2B NMDA receptor
  • Piperidines
  • Receptors, N-Methyl-D-Aspartate
  • Agmatine
  • ifenprodil