Characterization analysis and heavy metal-binding properties of CsMTL3 in Escherichia coli

FEBS Open Bio. 2018 Sep 19;8(11):1820-1829. doi: 10.1002/2211-5463.12520. eCollection 2018 Nov.

Abstract

Members of the metallothionein (MT) superfamily are involved in coordinating transition metal ions. In plants, MT family members are characterized by their arrangement of Cys residues. In this study, one member of the MT superfamily, CsMTL3, was characterized from a complementary DNA (cDNA) library from young cucumber fruit; CsMTL3 is predicted to encode a 64 amino acid protein with a predicted molecular mass of 6.751 kDa. Phylogenetic analysis identified it as a type 3 family member as the arrangement of N-terminal Cys residues was different from that of MT-like 2. Heterologous expression of CsMTL3 in Escherichia coli improved their heavy metal tolerance, particularly to Cd2+ and Cu2+, and led to increased uptake of Cd2+ and Cu2+; increased uptake was also observed for cells expressing Arabidopsis thaliana metallothionein 3 (AtMT3) and phytochelatin-like (PCL), with greatest uptake in PCL-expressing cells. These findings demonstrate that CsMTL3 can improve metal tolerance, especially for Cd2+ ions, when heterologously expressed in E. coli, and suggest that the composition and arrangement of N-terminal Cys residues are associated with binding capacity and preference for different metal ions.

Keywords: CsMTL3; Escherichia coli; heavy metal tolerance; heavy metal‐binding; metallothionein.