PRBAM: a new tool to analyze the MHC class I and HLA-DR anchor motifs

Immunology. 2019 Feb;156(2):187-198. doi: 10.1111/imm.13020. Epub 2018 Nov 22.

Abstract

Major histocompatibility complex (MHC) genes are highly polymorphic, which makes each MHC molecule different regarding their peptide repertoire, so they can bind and present to T lymphocytes. The increasing importance of immunopeptidomics and its use in personalized medicine in different fields such as oncology or autoimmunity demand the correct analysis of the peptide repertoires bound to human leukocyte antigen type 1 (HLA-I) and HLA-II molecules. Purification of the peptide pool by affinity chromatography and individual peptide sequencing using mass spectrometry techniques is the standard protocol to define the binding motifs of the different MHC-I and MHC-II molecules. The identification of MHC-I binding motifs is relatively simple, but it is more complicated for MHC-II. There are some programs that identify the anchor motifs of MHC-II molecules. However, these programs do not identify the anchor motif correctly for some HLA-II molecules and some anchor motifs have been deduced using subjective interpretation of the data. Here, we present a new software, called PRBAM (Peptide Repertoire-Based Anchor Motif) that uses a new algorithm based on the peptide-MHC interactions and, using peptide lists obtained by mass spectrometry sequencing, identifies the binding motif of MHC-I and HLA-DR molecules. PRBAM has an easy-to-use interface, and the results are presented in graphics, tables and peptide lists. Finally, the fact that PRBAM uses a new algorithm makes it complementary to other existing programs.

Keywords: MHC/HLA; antigen presentation; bioinformatics; peptidome; proteomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • HLA-DR Antigens / genetics*
  • HLA-DR Antigens / immunology
  • Histocompatibility Antigens Class I / genetics*
  • Histocompatibility Antigens Class I / immunology
  • Humans
  • Sequence Analysis, Protein*
  • Software*

Substances

  • HLA-DR Antigens
  • Histocompatibility Antigens Class I