Electrothermal Actuators for SiO₂ Photonic MEMS

Micromachines (Basel). 2016 Nov 7;7(11):200. doi: 10.3390/mi7110200.

Abstract

This paper describes the design, fabrication and characterization of electrothermal bimorph actuators consisting of polysilicon on top of thick (>10 μ m ) silicon dioxide beams. This material platform enables the integration of actuators with photonic waveguides, producing mechanically-flexible photonic waveguide structures that are positionable. These structures are explored as part of a novel concept for highly automated, sub-micrometer precision chip-to-chip alignment. In order to prevent residual stress-induced fracturing that is associated with the release of thick oxide structures from a silicon substrate, a special reinforcement method is applied to create suspended silicon dioxide beam structures. The characterization includes measurements of the post-release deformation (i.e., without actuation), as well as the deflection resulting from quasi-static and dynamic actuation. The post-release deformation reveals a curvature, resulting in the free ends of 800 μ m long silicon dioxide beams with 5 μ m-thick polysilicon to be situated approximately 80 μ m above the chip surface. Bimorph actuators that are 800 μ m in length produce an out-of-plane deflection of approximately 11 μ m at 60 mW dissipated power, corresponding to an estimated 240 ∘ C actuator temperature. The delivered actuation force of the 800 μ m-long bimorph actuators having 5 μ m-thick polysilicon is calculated to be approximately 750 μN at 120 mW .

Keywords: bending stiffness; bimorph actuator; curvature; deflection; photonic waveguide; silicon reinforcement; transient response.