21.69⁻24.36 GHz MEMS Tunable Band-Pass Filter

Micromachines (Basel). 2016 Aug 24;7(9):149. doi: 10.3390/mi7090149.

Abstract

The K-band microelectromechanical systems (MEMS) tunable band-pass filter, with a wide-frequency tunable range and miniature size, is able to fulfill the requirements of the multiband satellite communication systems. A novel 21.69⁻24.36 GHz MEMS tunable band-pass filter is designed, analyzed, fabricated and measured. This paper also designs and analyzes an inductively tuned slow-wave resonator, which consists of the MEMS capacitive switch, the MEMS capacitor and the short metal line. The proposed filter has four different work states by changing the capacitance values of the MEMS switches. Measured results demonstrate that, for all four states, the insertion loss is 2.81, 3.27, 3.65 and 4.03 dB at 24.36, 23.2, 22.24 and 21.69 GHz, respectively. The actuation voltage is 0, 20, 16 and 26 V, respectively. The 3 dB bandwidth of the tunable filter is 5.4%, 6.2%, 5.7% and 5.9%, respectively. This study contributes to the design of miniature millimeter tunable filters with a wide-frequency tunable range.

Keywords: inductively-tuned slow-wave resonator; microelectromechanical systems (MEMS); tunable band-pass filter.