Preparation of Polymer Electrolyte Membranes via Radiation-Induced Graft Copolymerization on Poly(ethylene-alt-tetrafluoroethylene) (ETFE) Using the Crosslinker N, N'-Methylenebis(acrylamide)

Membranes (Basel). 2018 Nov 6;8(4):102. doi: 10.3390/membranes8040102.

Abstract

Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N'-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting (DG) and high proton conductivity. To evaluate the electrochemical performance, the PEMs were tested in a fuel cell and in a vanadium redox-flow battery (VRFB). High power densities of 134 mW∙cm-2 and 474 mW∙cm-2 were observed, respectively.

Keywords: ETFE; crosslinker; fuel cell; graft copolymerization; polymer electrolyte membranes; vanadium redox-flow battery.