Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease

Noncoding RNA. 2018 Nov 3;4(4):30. doi: 10.3390/ncrna4040030.

Abstract

The kidneys play key roles in the maintenance of homeostasis, including fluid balance, blood filtration, erythropoiesis and hormone production. Disease-driven perturbation of renal function therefore has profound pathological effects, and chronic kidney disease is a leading cause of morbidity and mortality worldwide. Successive annual increases in global chronic kidney disease patient numbers in part reflect upward trends for predisposing factors, including diabetes, obesity, hypertension, cardiovascular disease and population age. Each kidney typically possesses more than one million functional units called nephrons, and each nephron is divided into several discrete domains with distinct cellular and functional characteristics. A number of recent analyses have suggested that signaling between these nephron regions may be mediated by microRNAs. For this to be the case, several conditions must be fulfilled: (i) microRNAs must be released by upstream cells into the ultrafiltrate; (ii) these microRNAs must be packaged protectively to reach downstream cells intact; (iii) these packaged microRNAs must be taken up by downstream recipient cells without functional inhibition. This review will examine the evidence for each of these hypotheses and discuss the possibility that this signaling process might mediate pathological effects.

Keywords: chronic kidney disease; extracellular vesicle; microRNA.

Publication types

  • Review