The majority of cells in so-called "mesenchymal stem cell" population are neither stem cells nor progenitors

Transfus Clin Biol. 2019 Nov;26(4):316-323. doi: 10.1016/j.tracli.2018.08.157. Epub 2018 Aug 25.

Abstract

Objectives: The first-passage adherent human bone marrow fibroblast-like cell population corresponds, in terms of phenotype and three-lineage differentiation capacity (assayed in bulk culture), to commonly termed "mesenchymal stem cells". Here we determine the proportion of high proliferative capacity multipotent cells present in this population in order to estimate the proportion of cells that can or cannot be considered as stem and progenitor cells.

Material and methods: The single-cell cultures were established starting from human bone marrow-derived first-passage fibroblast-like cells and the proliferating clones were either transferred to secondary cultures to evaluate their further clonogenicity, or split into three wells to assess differentiation into each of the three different lineages.

Results: The analysis of 197 single-cell cultures from three different bone marrow donors shows that only∼40% of so-called "mesenchymal stem cells" exhibit multipotency and are capable of sustained clonogenicity in secondary cultures.

Conclusion: Even in the first ex vivo passage under favorable conditions the majority (∼60%) of so-called "mesenchymal stem cells" are not multipotent and thus do not represent a stem cell entity.

Keywords: Committed progenitors; Differentiation potential; Fibroblast-like cells; Individual clone analysis; Mesenchymal stem cells; Mesenchymal stromal cells; Multipotent cells; Self-renewal capacity; Single-cell culture.

MeSH terms

  • Antigens, CD / analysis
  • Bone Marrow Cells / classification
  • Cell Adhesion
  • Cell Division
  • Cell Lineage
  • Cell Self Renewal
  • Cell Separation
  • Cells, Cultured
  • Clone Cells / cytology
  • Colony-Forming Units Assay
  • Fibroblast Growth Factor 2 / pharmacology
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Single-Cell Analysis
  • Stromal Cells / cytology

Substances

  • Antigens, CD
  • Fibroblast Growth Factor 2