A 19F magnetic resonance imaging-based diagnostic test for bile acid diarrhea

MAGMA. 2019 Feb;32(1):163-171. doi: 10.1007/s10334-018-0713-9. Epub 2018 Nov 1.

Abstract

In up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon-data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. 75Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders. Here, we review bile acid synthesis and transport, the pathogenesis of bile acid diarrhea, the reasons clinicians frequently overlook this disorder, including the limitations of currently available tests, and our efforts to develop a novel 19F magnetic resonance imaging (MRI)-based diagnostic approach. We created 19F-labeled bile acid analogues whose in vitro and in vivo transport mimics that of naturally occurring bile acids. Using dual 1H/19F MRI of the gallbladders of live mice fed 19F-labeled bile acid analogues, we were able to differentiate wild-type mice from strains deficient in intestinal expression of a key bile acid transporter, the apical sodium-dependent bile acid transporter (ASBT), or FGF15, the mouse homologue of FGF19. In addition to reviewing our development of 19F-labeled bile acid analogue-MRI to diagnose bile acid diarrhea, we discuss challenges to its clinical implementation. A major limitation is the paucity of clinical MRI facilities equipped with the appropriate coil and software needed to detect 19F signals.

Keywords: 19F MRI; Bile acids; Diarrhea; Enterohepatic circulation; Gallbladder; Irritable bowel syndrome.

Publication types

  • Review

MeSH terms

  • Animals
  • Bile Acids and Salts / chemistry*
  • Biological Transport
  • Diagnostic Tests, Routine
  • Diarrhea / diagnostic imaging*
  • Female
  • Fibroblast Growth Factors / metabolism
  • Fluorine-19 Magnetic Resonance Imaging*
  • Gallbladder / drug effects
  • Humans
  • Intestines
  • Male
  • Materials Testing
  • Mice
  • Mice, Knockout
  • Organic Anion Transporters, Sodium-Dependent / metabolism
  • Selenium Radioisotopes / chemistry
  • Symporters / metabolism
  • Taurocholic Acid / chemistry

Substances

  • Bile Acids and Salts
  • Organic Anion Transporters, Sodium-Dependent
  • Selenium Radioisotopes
  • Selenium-75
  • Symporters
  • fibroblast growth factor 15, mouse
  • sodium-bile acid cotransporter
  • Taurocholic Acid
  • Fibroblast Growth Factors