Combustion Synthesis of Composition Ferroalloys

Materials (Basel). 2018 Oct 28;11(11):2117. doi: 10.3390/ma11112117.

Abstract

The main objective of this paper is to present results of the research in the development of a specialized self-propagating high-temperature synthesis (SHS) technology for ferroalloy composites, as applied to steelmaking. The problem of creating such a production cycle has been solved by developing a new approach to the practical implementation of self-propagating high-temperature synthesis, as applied to metallurgy. The metallurgical variation of SHS is based on the use of different metallurgic alloys (including waste in the form of dust from ferroalloy production) as basic raw materials in the new process. Here, the process of synthesis by combustion is realized through exothermic exchange reactions. The process produces a composite, based on inorganic compositions with a bond of iron and/or alloy based on iron. It has been shown that in terms of the aggregate state of initial reagents, metallurgical SHS processes are either gasless or gas-absorbing. Combustion regimes significantly differ when realized in practice. To organize the metallurgical SHS process in weakly exothermic systems, different variations of the thermal trimming principle are used. In the present study, self-propagating high-temperature synthesis of ferrovanadium nitride, which is widely used in steel alloying, was investigated. It has been shown that the phase composition of the initial alloy has a profound impact on the regular patterns in ferrovanadium combustion in nitrogen and on the mechanism itself. During the nitriding of σ-(Fe-V), process activation is taking place. The activation is due to the transformation of the intermetallide into an α-solid solution, when the temperature of phase transition is reached (~1200 °C). The composite structure of the products of ferrovanadium is nitriding by the fusion of particles-droplets composed of molten Fe and solid VN.

Keywords: borides; composite ferroalloys; ferrovanadium nitride; filtration combustion; nitrides; self-propagating high-temperature synthesis (SHS).

Grants and funding