Administration of Downstream ApoE Attenuates the Adverse Effect of Brain ABCA1 Deficiency on Stroke

Int J Mol Sci. 2018 Oct 28;19(11):3368. doi: 10.3390/ijms19113368.

Abstract

The ATP-binding cassette transporter member A1 (ABCA1) and apolipoprotein E (ApoE) are major cholesterol transporters that play important roles in cholesterol homeostasis in the brain. Previous research demonstrated that specific deletion of brain-ABCA1 (ABCA1-B/-B) reduced brain grey matter (GM) and white matter (WM) density in the ischemic brain and decreased functional outcomes after stroke. However, the downstream molecular mechanism underlying brain ABCA1-deficiency-induced deficits after stroke is not fully understood. Adult male ABCA1-B/-B and ABCA1-floxed control mice were subjected to distal middle-cerebral artery occlusion and were intraventricularly infused with artificial mouse cerebrospinal fluid as vehicle control or recombinant human ApoE2 into the ischemic brain starting 24 h after stroke for 14 days. The ApoE/apolipoprotein E receptor 2 (ApoER2)/high-density lipoprotein (HDL) levels and GM/WM remodeling and functional outcome were measured. Although ApoE2 increased brain ApoE/HDL levels and GM/WM density, negligible functional improvement was observed in ABCA1-floxed-stroke mice. ApoE2-administered ABCA1-B/-B stroke mice exhibited elevated levels of brain ApoE/ApoER2/HDL, increased GM/WM density, and neurogenesis in both the ischemic ipsilateral and contralateral brain, as well as improved neurological function compared with the vehicle-control ABCA1-B/-B stroke mice 14 days after stroke. Ischemic lesion volume was not significantly different between the two groups. In vitro supplementation of ApoE2 into primary cortical neurons and primary oligodendrocyte-progenitor cells (OPCs) significantly increased ApoER2 expression and enhanced cholesterol uptake. ApoE2 promoted neurite outgrowth after oxygen-glucose deprivation and axonal outgrowth of neurons, and increased proliferation/survival of OPCs derived from ABCA1-B/-B mice. Our data indicate that administration of ApoE2 minimizes the adverse effects of ABCA1 deficiency after stroke, at least partially by promoting cholesterol traffic/redistribution and GM/WM remodeling via increasing the ApoE/HDL/ApoER2 signaling pathway.

Keywords: ATP-binding cassette transporter A1; apolipoprotein E; apolipoprotein E receptor 2; high density lipoprotein; motor function; stroke.

MeSH terms

  • ATP Binding Cassette Transporter 1 / deficiency*
  • ATP Binding Cassette Transporter 1 / genetics
  • Animals
  • Apolipoproteins E / administration & dosage
  • Apolipoproteins E / pharmacology*
  • Apolipoproteins E / therapeutic use
  • Brain / drug effects
  • Brain / metabolism
  • Cells, Cultured
  • Cholesterol, HDL / metabolism
  • Humans
  • LDL-Receptor Related Proteins / genetics
  • LDL-Receptor Related Proteins / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurons / drug effects
  • Neurons / metabolism
  • Stroke / drug therapy
  • Stroke / metabolism*

Substances

  • ABCA1 protein, mouse
  • ATP Binding Cassette Transporter 1
  • Apolipoproteins E
  • Cholesterol, HDL
  • LDL-Receptor Related Proteins
  • low density lipoprotein receptor-related protein 8