Effects of Polymer Matrices and Carbon Nanotubes on the Generation of Electric Energy in a Microbial Fuel Cell

Membranes (Basel). 2018 Oct 25;8(4):99. doi: 10.3390/membranes8040099.

Abstract

The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized Gluconobacter oxydans VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or N-vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed pyrroloquinoline quinone (PQQ)-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. Microbial fuel cells based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm²) at a minimal resistance (1111 Ohm cm²). Modification of the anode by multiwalled carbon nanotubes (MWCNT) led to a slight decrease of internal resistance (down to 1078 Ohm cm²) and to an increase of generated power density up to 10.6 μW/cm². We explored the possibility of accumulating electric energy from an MFC on a 6800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a Bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.

Keywords: boost converter accumulation; immobilization of bacterial cells; interaction of cell membranes with carbon nanotubes; microbial fuel cell; polymer matrix.