[18F]FE-OTS964: a Small Molecule Targeting TOPK for In Vivo PET Imaging in a Glioblastoma Xenograft Model

Mol Imaging Biol. 2019 Aug;21(4):705-712. doi: 10.1007/s11307-018-1288-6.

Abstract

Purpose: Lymphokine-activated killer T cell-originated protein kinase (TOPK) is a fairly new cancer biomarker with great potential for clinical applications. The labeling of a TOPK inhibitor with F-18 can be exploited for positron emission tomography (PET) imaging allowing more accurate patient identification, stratification, and disease monitoring.

Procedures: [18F]FE-OTS964 was produced starting from OTS964, a preclinical drug which specifically binds to TOPK, and using a two-step procedure with [18F]fluoroethyl p-toluenesulfonate as a prosthetic group. Tumors were generated in NSG mice by subcutaneous injection of U87 glioblastoma cells. Animals were injected with [18F]FE-OTS964 and PET imaging and ex vivo biodistribution analysis was carried out.

Results: [18F]FE-OTS964 was successfully synthesized and validated in vivo as a PET imaging agent. The labeling reaction led to 15.1 ± 7.5 % radiochemical yield, 99 % radiochemical purity, and high specific activity. Chemical identity of the radiotracer was confirmed by co-elution on an analytical HPLC with a cold-labeled standard. In vivo PET imaging and biodistribution analysis showed tumor uptake of 3.06 ± 0.30 %ID/cc, which was reduced in animals co-injected with excess blocking dose of OTS541 to 1.40 ± 0.42 %ID/cc.

Conclusions: [18F]FE-OTS964 is the first TOPK inhibitor for imaging purposes and may prove useful in the continued investigation of the pharmacology of TOPK inhibitors and the biology of TOPK in cancer patients.

Keywords: Glioblastoma; Molecular imaging; OTS964; PET; TOPK.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms / blood
  • Brain Neoplasms / diagnostic imaging
  • Brain Neoplasms / drug therapy*
  • Cell Line, Tumor
  • Glioblastoma / blood
  • Glioblastoma / diagnostic imaging*
  • Glioblastoma / drug therapy*
  • Half-Life
  • Humans
  • Mice
  • Mitogen-Activated Protein Kinase Kinases / metabolism*
  • Positron-Emission Tomography*
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Quinolones / blood
  • Quinolones / pharmacology
  • Quinolones / therapeutic use*
  • Radiopharmaceuticals / chemical synthesis
  • Radiopharmaceuticals / chemistry
  • Small Molecule Libraries / pharmacology
  • Small Molecule Libraries / therapeutic use*
  • Xenograft Model Antitumor Assays*

Substances

  • OTS964
  • Protein Kinase Inhibitors
  • Quinolones
  • Radiopharmaceuticals
  • Small Molecule Libraries
  • Mitogen-Activated Protein Kinase Kinases
  • TOPK protein, mouse