Transient O2 pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome

Microbiome. 2018 Oct 23;6(1):189. doi: 10.1186/s40168-018-0574-5.

Abstract

Background: Many environments contain redox transition zones, where transient oxygenation events can modulate anaerobic reactions that influence the cycling of iron (Fe) and carbon (C) on a global scale. In predominantly anoxic soils, this biogeochemical cycling depends on Fe mineral composition and the activity of mixed Fe(III)-reducer populations that may be altered by periodic pulses of molecular oxygen (O2).

Methods: We repeatedly exposed anoxic (4% H2:96% N2) suspensions of soil from the Luquillo Critical Zone Observatory to 1.05 × 102, 1.05 × 103, and 1.05 × 104 mmol O2 kg-1 soil h-1 during pulsed oxygenation treatments. Metatranscriptomic analysis and 57Fe Mössbauer spectroscopy were used to investigate changes in Fe(III)-reducer gene expression and Fe(III) crystallinity, respectively.

Results: Slow oxygenation resulted in soil Fe-(oxyhydr)oxides of higher crystallinity (38.1 ± 1.1% of total Fe) compared to fast oxygenation (30.6 ± 1.5%, P < 0.001). Transcripts binning to the genomes of Fe(III)-reducers Anaeromyxobacter, Geobacter, and Pelosinus indicated significant differences in extracellular electron transport (e.g., multiheme cytochrome c, multicopper oxidase, and type-IV pilin gene expression), adhesion/contact (e.g., S-layer, adhesin, and flagellin gene expression), and selective microbial competition (e.g., bacteriocin gene expression) between the slow and fast oxygenation treatments during microbial Fe(III) reduction. These data also suggest that diverse Fe(III)-reducer functions, including cytochrome-dependent extracellular electron transport, are associated with type-III fibronectin domains. Additionally, the metatranscriptomic data indicate that Methanobacterium was significantly more active in the reduction of CO2 to CH4 and in the expression of class(III) signal peptide/type-IV pilin genes following repeated fast oxygenation compared to slow oxygenation.

Conclusions: This study demonstrates that specific Fe(III)-reduction mechanisms in mixed Fe(III)-reducer populations are uniquely sensitive to the rate of O2 influx, likely mediated by shifts in soil Fe(III)-(oxyhydr)oxide crystallinity. Overall, we provide evidence that transient oxygenation events play an important role in directing anaerobic pathways within soil microbiomes, which is expected to alter Fe and C cycling in redox-dynamic environments.

Keywords: C cycling; Metatranscriptomics; Microbial Fe(III) reduction; Mössbauer spectroscopy; Redox cycling; Soil microbiome.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Cycle / physiology
  • Carbon Dioxide / metabolism
  • Cytochromes c / chemistry
  • Electron Transport / physiology
  • Iron / chemistry*
  • Methane / metabolism
  • Methanobacterium / metabolism*
  • Microbiota / genetics*
  • Microbiota / physiology*
  • Oxidation-Reduction
  • Oxidoreductases / chemistry
  • Oxygen / chemistry*
  • Soil / chemistry
  • Soil Microbiology

Substances

  • Soil
  • Carbon Dioxide
  • Cytochromes c
  • Iron
  • Oxidoreductases
  • Methane
  • Oxygen