Opto-Spintronics: Photoisomerization-Induced Spin State Switching at 300 K in Photochrome Cobalt-Dioxolene Thin Films

J Am Chem Soc. 2018 Nov 7;140(44):14990-15000. doi: 10.1021/jacs.8b09190. Epub 2018 Oct 26.

Abstract

Controllable quantum systems are under active investigation for quantum computing, secure information processing, and nonvolatile memory. The optical manipulation of spin quantum states provides an important strategy for quantum control with both temporal and spatial resolution. Challenges in increasing the lifetime of photoinduced magnetic states at T > 200 K have hindered progress toward utilizing photomagnetic materials in quantum device architectures. Here we demonstrate reversible light-induced magnetization switching in an organic thin film at device operating temperatures of 300-330 K. By utilizing photochromic ligands that undergo structural changes in the solid state, the changes in ligand field associated with photoisomerization modulate the ligand field and in turn the oxidation and spin state of a bound metal center. Green light irradiation (λexc = 550 nm) of a spirooxazine cobalt-dioxolene complex induces photoisomerization of the ligand that in turn triggers a reversible intramolecular charge-transfer coupled spin-transition process at the cobalt center. The generation of photomagnetic states through conversion between a low-spin Co(III)-semiquinone doublet and a high-spin Co(II)-bis-semiquinone sextet state has been demonstrated in both solution and the solid state and is described as a photoisomerization-induced spin-charge excited state (PISCES) process. The high transition temperature (325 K) and long-lived photoinduced state (τ = 10 s at 300 K) are dictated by the photochromic ligand. Theory provides effective modeling of the phenomenon and long-term strategies to further modulate the lifetimes of photomagnetic states for quantum information technologies at the single molecule level.