Characterization of murine CEACAM1 in vivo reveals low expression on CD8+ T cells and no tumor growth modulating activity by anti-CEACAM1 mAb CC1

Oncotarget. 2018 Oct 2;9(77):34459-34470. doi: 10.18632/oncotarget.26108.

Abstract

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been reported to mediate both tumorigenic and anti-tumor effects in vivo. Blockade of the CEACAM1 signaling pathway has recently been implicated as a novel mechanism for cancer immunotherapy. CC1, a mouse anti-CEACAM1 monoclonal antibody (mAb), has been widely used as a pharmacological tool in preclinical studies to inform on CEACAM1 pathway biology although limited data are available on its CEACAM1 blocking characteristics or pharmacodynamic-pharmacokinetic profiles. We sought to investigate CEACAM1 expression on mouse tumor and immune cells, characterize CC1 mAb binding, and evaluate CC1 in syngeneic mouse oncology models as a monotherapy and in combination with an anti-PD-1 mAb. CEACAM1 expression was observed at high levels on neutrophils, NK cells and myeloid-derived suppressor cells (MDSCs), while the expression on tumor-infiltrating CD8+ T cells was low. Unexpectedly, rather than blocking, CC1 facilitated binding of soluble CEACAM1 to CEACAM1 expressing cells. No anti-tumor effects were observed in CT26, MBT2 or A20 models when tested up to 30 mg/kg dose, a dose that was estimated to achieve >90% target engagement in vivo. Taken together, tumor infiltrating CD8+ T cells express low levels of CEACAM1 and CC1 Ab mediates no or minimal anti-tumor effects in vivo, as a monotherapy or in combination with anti-PD-1 treatment.

Keywords: CC1; CD8+ T cells; CEACAM1; pharmacokinetic; syngeneic mouse model.