Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles

J Am Chem Soc. 2018 Nov 14;140(45):15290-15299. doi: 10.1021/jacs.8b08035. Epub 2018 Oct 31.

Abstract

Photoinduced charge transfer across the metal oxide-organic ligand interface plays a key role in the diverse applications of metal oxide nanomaterials/nanostructures, such as photovoltaics, photocatalysis, and optoelectronics. Thus far, most studies are focused on molecular engineering of the organic chromophores, where the charge-transfer properties have been found to dictate the photo absorption efficiency and eventual device performance. Yet, as the chromophores are mostly bound onto the metal oxide surfaces by hydroxyl or carboxyl anchors, the impacts of the bonding interactions at the metal oxide-ligand interface on interfacial charge transfer have remained largely unexplored. Herein, acetylene derivatives are demonstrated as effective surface capping ligands for metal oxide nanoparticles, as exemplified with TiO2, RuO2, and ZnO. Experimental studies and first-principles calculations suggest the formation of M-O-C≡C- core-ligand linkages that lead to effective interfacial charge delocalization, in contrast to hopping/tunneling by the conventional M-O-CO- interfacial bonds in the carboxyl-capped counterparts. This leads to the generation of an interfacial state within the oxide bandgap and much enhanced sensitization of the nanoparticle photoluminescence emissions as well as photocatalytic activity, as manifested in the comparative studies with TiO2 nanoparticles functionalized with ethynylpyrene and pyrenecarboxylic acid. These results highlight the significance of the unique interfacial bonding chemistry by acetylene anchoring group in facilitating efficient charge transfer through the oxide-ligand interfacial linkage and hence the fundamental implication in their practical applications.