Suppression effect on IFN-γ of adipose tissue-derived mesenchymal stem cells isolated from β2-microglobulin-deficient mice

Exp Ther Med. 2018 Nov;16(5):4277-4282. doi: 10.3892/etm.2018.6689. Epub 2018 Sep 4.

Abstract

Administration of bone marrow-derived mesenchymal stem cells (MSCs) is a possible treatment for graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation and other inflammatory conditions. To address the mechanism of immunosuppression by MSCs, in particular those derived from adipose tissue (AMSCs), AMSCs were isolated from three different mouse strains, and the suppressive capacity of the AMSCs thus obtained to suppress interferon (IFN)-γ generation in mixed lymphocyte reaction cultures serving as an in vitro model of GVHD were assessed. It was revealed that the AMSCs had a potent capacity to suppress IFN-γ production regardless of their strain of origin and that such suppression was not associated with production of interleukin-10. In addition, the results demonstrated that β2-microglobulin (β2m)-deficient AMSCs from β2m-/- mice were also potent suppressor cells, verifying the fact that the mechanism underlying the suppression by AMSCs is independent of major histocompatibility complex (MHC) class I expression or MHC compatibility. As AMSCs appear to have immunosuppressive properties, AMSCs may be a useful source of biological suppressor cells for the control of GVHD in humans.

Keywords: adipose tissue-derived mesenchymal stem cells; graft vs. host disease; major histocompatibility complex class I; β2-microglobulin.