Sonic hedgehog signaling regulates hypoxia/reoxygenation-induced H9C2 myocardial cell apoptosis

Exp Ther Med. 2018 Nov;16(5):4193-4200. doi: 10.3892/etm.2018.6678. Epub 2018 Sep 3.

Abstract

The sonic hedgehog (Shh) signaling pathway has been reported to protect cells against hypoxia/reoxygenation (H/R) injury; however, the role of Shh and relevant molecular mechanisms remain unclear. In the present study, the rat cardiomyoblast cell line H9C2 was subjected to hypoxia and serum-starvation for 4 h. Cells were subsequently reoxygenated using 95% O2 and 5% CO2. Reverse transcription-quantitative polymerase chain reaction was performed to quantify the expression of Shh mRNA, while cell apoptosis was assessed using flow cytometry. Caspase-3 activity and p53 expression were measured by western blotting and an MTT assay was subsequently used to assess cell viability. In addition, reactive oxygen species levels were measured using dichlorofluorescein and H/R-induced changes in the activation of superoxide dismutase, catalase, phosphorylated-endothelial nitric oxide synthase, phosphorylated-protein kinase B (Akt) and mammalian target of rapamycin activation were assessed using western blotting. H/R treatment decreased the cell viability of H9C2 cells, but activated endogenous Shh signaling. The activation of Shh signaling protected H9C2 myocardial cells from H/R-induced apoptosis and restored cell viability. In the present study, Shh signaling was demonstrated to serve a protective role against H/R by activating the phosphoinositol 3-kinase (PI3K)/Akt pathway and promoting the expression of anti-oxidant enzymes to ameliorate oxidative stress. In summary, Shh signaling attenuated H/R-induced apoptosis through via the PI3K/Akt pathway.

Keywords: H9C2 myocardial cells; apoptosis; hypoxia/reoxygenation; sonic hedgehog signaling pathway.