Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe

Mikrochim Acta. 2018 Oct 20;185(11):511. doi: 10.1007/s00604-018-3043-8.

Abstract

A ratiometric probe is described for the fluorometric determination of Cu(II) ions based on their quenching effect on the luminescence of dually-emitting quantum dots (QDs). ZnS QDs were doped with Mn(II) and subsequently modified with mercaptopropionic acid to give the QD probe which consists of a sole fluorophore but has two emission peaks (at 430 and 590 nm under 310 nm excitation, respectively). On addition of Cu(II) ions, the 590 nm band is quenched while the 430 nm band exhibits a little change. The changes in the intensity ratios of the yellow and the purple bands increases linearly in the 0 to 3.0 μM Cu(II) concentration range, and the detection limit reached 14 nM. The QD probe was validated and successfully applied to the determination of Cu(II) in spiked real water samples. Graphical abstract Mn-doped ZnS (ZnS:Mn(II)) quantum dots were synthesized with yellow fluorescence. After the modification of 3-mercaptopropionic acid (MPA), ZnS:Mn(II) was transferred to aqueous phase and became MPA modified Mn-doped ZnS (MPA- ZnS:Mn(II)). The fluorescence was changed to purple upon the addition of copper ions because the yellow band was largely quenched while the purple band only changed a little.

Keywords: Copper ions; Dual emissions; Fluorescence lifetime; Fluorometry; Mercaptopropionic acid; Quantum dots; Quenching; Zinc sulfide.

Publication types

  • Research Support, Non-U.S. Gov't