Ability of a wash regimen to remove biofilm from the exposed surface of materials used in osseointegrated implants

J Orthop Res. 2019 Jan;37(1):248-257. doi: 10.1002/jor.24161. Epub 2018 Nov 19.

Abstract

The skin/implant interface of osseointegrated (OI) implants is susceptible to infection, causing excess pain, increased morbidity, and possibly implant removal. Novel distal femoral OI implants with binary nitride coatings have been developed with little physiological modeling to collect microbiological evidence of resistance to bacterial attachment. This in vitro study evaluated a Ti-6Al-4V alloy coated with TiNbN and treated with low plasticity burnishing (LPB) to assess attachment and biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) under physiologically modeling conditions compared to standard Ti-6Al-4V alloy materials with a polished ("Color Buff") or non-polished finish ("Satin Finish"). Washability of the materials were also assessed and compared. It was hypothesized that the TiNbN/LPB treatments would resist bacterial adhesion and biofilm formation to a greater degree than the other two materials, and have a higher degree of bacterial removal following a clinically relevant wash regimen. Material types were exposed to a constant flow of broth containing MRSA and were analyzed using bacterial quantification, surface coverage analysis, and SEM imaging. Quantification data showed no difference in bacterial attachment among the varying material types both with and without the wash regimen. Surface coverage and SEM analysis confirmed results. The wash regimen led to an approximately 3 log10 reduction in bacteria for all material types. Though the results did not support the hypothesis that a TiNbN coating/LPB treatment might resist bacterial attachment/biofilm formation more than other alloys, or have less bacteria after cleaning, results did support the potential importance of a daily wound-hygiene regimen at the skin/implant interface of OI materials. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

Keywords: TiNbN; biofilm; infection; osseointegrated implant; scanning electron microscopy; titanium.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alloys
  • Biofilms*
  • Bone-Anchored Prosthesis / microbiology*
  • Disinfection / methods*
  • Microscopy, Electron, Scanning
  • Niobium / therapeutic use*
  • Prosthesis-Related Infections / prevention & control*
  • Titanium / therapeutic use*

Substances

  • Alloys
  • titanium aluminum alloy
  • titanium niobium nitride
  • Niobium
  • Titanium