B Chromosomes in Grasshoppers: Different Origins and Pathways to the Modern Bs

Genes (Basel). 2018 Oct 18;9(10):509. doi: 10.3390/genes9100509.

Abstract

B chromosomes (Bs) were described in most taxa of eukaryotes and in around 11.9% of studied Orthopteran species. In some grasshopper species, their evolution has led to many B chromosome morphotypes. We studied the Bs in nine species (Nocaracris tardus, Nocaracris cyanipes, Aeropus sibiricus, Chorthippus jacobsoni, Chorthippus apricarius, Bryodema gebleri, Asiotmethis heptapotamicus songoricus, Podisma sapporensis, and Eyprepocnemis plorans), analyzing their possible origin and further development. The studied Bs consisted of C-positive or C-positive and C-negative regions. Analyzing new data and considering current hypotheses, we suggest that Bs in grasshoppers could arise through different mechanisms and from different chromosomes of the main set. We gave our special attention to the Bs with C-negative regions and suggest a new hypothesis of B chromosome formation from large or medium autosomes. This hypothesis includes dissemination of repetitive sequences and development of intercalary heterochromatic blocks in euchromatic chromosome arm followed by deletion of euchromatic regions located between them. The hypothesis is based on the findings of the Eyprepocnemis plorans specimens with autosome containing numerous intercalary repeat clusters, analysis of C-positive Bs in Eyprepocnemis plorans and Podisma sapporensis containing intercalary and terminal C-negative regions, and development of heterochromatic neo-Y chromosome in some Pamphagidae grasshoppers.

Keywords: B chromosomes; DNA composition; euchromatin degradation; grasshoppers; microdissected DNA probes; repeat clusters.