The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana

Sci Rep. 2018 Oct 18;8(1):15404. doi: 10.1038/s41598-018-33743-x.

Abstract

Verticillium wilt caused by the soil-borne fungus Verticillium dahliae is a common, devastating plant vascular disease notorious for causing economic losses. Despite considerable research on plant resistance genes, there has been little progress in modeling the effects of this fungus owing to its complicated pathogenesis. Here, we analyzed the transcriptional and metabolic responses of Arabidopsis thaliana to V. dahliae inoculation by Illumina-based RNA sequencing (RNA-seq) and nuclear magnetic resonance (NMR) spectroscopy. We identified 13,916 differentially expressed genes (DEGs) in infected compared with mock-treated plants. Gene ontology analysis yielded 11,055 annotated DEGs, including 2,308 for response to stress and 2,234 for response to abiotic or biotic stimulus. Pathway classification revealed involvement of the metabolic, biosynthesis of secondary metabolites, plant-pathogen interaction, and plant hormone signal transduction pathways. In addition, 401 transcription factors, mainly in the MYB, bHLH, AP2-EREBP, NAC, and WRKY families, were up- or downregulated. NMR analysis found decreased tyrosine, asparagine, glutamate, glutamine, and arginine and increased alanine and threonine levels following inoculation, along with a significant increase in the glucosinolate sinigrin and a decrease in the flavonoid quercetin glycoside. Our data reveal corresponding changes in the global transcriptomic and metabolic profiles that provide insights into the complex gene-regulatory networks mediating the plant's response to V. dahliae infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis / microbiology
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant*
  • Gene Regulatory Networks
  • Host-Pathogen Interactions
  • Metabolomics*
  • Plant Diseases / genetics
  • Plant Diseases / microbiology*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Transcriptome*
  • Verticillium / physiology*

Substances

  • Plant Proteins