Oxygen Uptake Slow Component and the Efficiency of Resistance Exercises

J Strength Cond Res. 2021 Apr 1;35(4):1014-1022. doi: 10.1519/JSC.0000000000002905.

Abstract

Garnacho-Castaño, MV, Albesa-Albiol, L, Serra-Payá, N, Gomis Bataller, M, Pleguezuelos Cobo, E, Guirao Cano, L, Guodemar-Pérez, J, Carbonell, T, Domínguez, R, and Maté-Muñoz, JL. Oxygen uptake slow component and the efficiency of resistance exercises. J Strength Cond Res 35(4): 1014-1022, 2021-This study aimed to evaluate oxygen uptake slow component (V̇o2sc) and mechanical economy/efficiency in half squat (HS) exercise during constant-load tests conducted at lactate threshold (LT) intensity. Nineteen healthy young men completed 3 HS exercise tests separated by 48-hour rest periods: 1 repetition maximum (1RM), incremental-load HS test to establish the %1RM corresponding to the LT, and constant-load HS test at the LT. During the last test, cardiorespiratory, lactate, and mechanical responses were monitored. Fatigue in the lower limbs was assessed before and after the constant-load test using a countermovement jump test. A slight and sustained increase of the V̇o2sc and energy expended (EE) was observed (p < 0.001). In blood lactate, no differences were observed between set 3 to set 21 (p > 0.05). A slight and sustained decrease of half squat efficiency and gross mechanical efficiency (GME) was detected (p < 0.001). Significant inverse correlations were observed between V̇o2 and GME (r = -0.93, p < 0.001). Inverse correlations were detected between EE and GME (r = -0.94, p < 0.001). Significant losses were observed in jump height ability and in mean power output (p < 0.001) in response to the constant-load HS test. In conclusion, V̇o2sc and EE tended to rise slowly during constant-load HS exercise testing. This slight increase was associated with lowered efficiency throughout constant-load test and a decrease in jump capacity after testing. These findings would allow to elucidate the underlying fatigue mechanisms produced by resistance exercises in a constant-load test at LT intensity.

MeSH terms

  • Exercise
  • Exercise Test
  • Humans
  • Lactic Acid
  • Male
  • Oxygen
  • Resistance Training*

Substances

  • Lactic Acid
  • Oxygen