Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel

J Biol Chem. 2018 Dec 14;293(50):19492-19500. doi: 10.1074/jbc.RA118.003876. Epub 2018 Oct 17.

Abstract

Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate-acetate/proton symporter in Escherichia coli However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.

Keywords: SatP; acetate uptake; electrophysiology; hexamer; ion channel; membrane channel; membrane protein; monocarboxylate transport; organic anion channel; protein structure; structural biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Crystallography, X-Ray
  • Escherichia coli
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / metabolism
  • Models, Molecular
  • Organic Anion Transporters / chemistry*
  • Organic Anion Transporters / metabolism
  • Protein Multimerization*
  • Protein Structure, Quaternary

Substances

  • Escherichia coli Proteins
  • Organic Anion Transporters
  • SatP protein, E coli

Associated data

  • PDB/5ZUG