Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient

Biomed Opt Express. 2018 Oct 1;9(10):5084-5099. doi: 10.1364/BOE.9.005084.

Abstract

The attenuation coefficient has proven to be a useful tool in numerous biological applications, but accurate calculation is dependent on the characterization of the confocal effect. This study presents a method to precisely determine the confocal effect and its focal plane within a sample by examining the ratio of two optical coherence tomography (OCT) images. The method can be employed to produce a single-value estimate, or a 2D map of the focal plane accounting for the curvature or tilt within the sample. Furthermore, this method is applicable to data obtained with both high numerical aperture (NA) and low-NA lenses, thereby furthering the applicability of the attenuation coefficient to high-NA OCT data. We test and validate this method using standard samples of Intralipid 20% and 5%, improving the accuracy to 99% from 65% compared to the traditional method and preliminarily show applicability to real biological data of glioblastoma acquired in vivo in a murine model.