Modeling Cell Adhesion and Extravasation in Microvascular System

Adv Exp Med Biol. 2018:1097:219-234. doi: 10.1007/978-3-319-96445-4_12.

Abstract

The blood flow behaviors in the microvessels determine the transport modes and further affect the metastasis of circulating tumor cells (CTCs). Much biochemical and biological efforts have been made on CTC metastasis; however, precise experimental measurement and accurate theoretical prediction on its mechanical mechanism are limited. To complement these, numerical modeling of a CTC extravasation from the blood circulation, including the steps of adhesion and transmigration, is discussed in this chapter. The results demonstrate that CTCs prefer to adhere at the positive curvature of curved microvessels, which is attributed to the positive wall shear stress/gradient. Then, the effects of particulate nature of blood on CTC adhesion are investigated and are found to be significant in the microvessels. Furthermore, the presence of red blood cell (RBC) aggregates is also found to promote the CTC adhesion by providing an additional wall-directed force. Finally, a single cell passing through a narrow slit, mimicking CTC transmigration, was examined under the effects of cell deformability. It showed that the cell shape and surface area increase play a more important role than the cell elasticity in cell transit across the narrow slit.

Publication types

  • Review

MeSH terms

  • Biomechanical Phenomena
  • Cell Adhesion*
  • Erythrocytes
  • Humans
  • Microvessels*
  • Models, Biological*
  • Neoplastic Cells, Circulating*
  • Stress, Mechanical