Optimization of protocols for microinjection-based delivery of cryoprotective agents into Japanese whiting Sillago japonica embryos

Cryobiology. 2018 Dec:85:25-32. doi: 10.1016/j.cryobiol.2018.10.007. Epub 2018 Oct 9.

Abstract

Microinjection has proven useful for introduction of low-permeability cryoprotective agents (CPAs) into fish eggs or embryos for cryopreservation. In this work, we examined the suitable conditions for single or combined microinjection into the perivitelline space (PS) and the yolk mass (YM) of embryos of the Japanese whiting, an alternative marine fish model for embryo cryopreservation studies. The parameters examined were injection volume, CPA type and concentration, vehicle (diluent), and suitable developmental stage. Somites and tail elongation embryos tolerated single or combined injection with 2.1 and 15.6 nl in the PS and YM, respectively, whereas earlier embryonic stages tolerated only up to 8.2 nl in the YM. The injected solutions diffused rapidly throughout the PS and YM and remained contained within each compartment unless in the case of structural damage caused by injection of larger volumes. Yamamoto solution was marginally better as a vehicle for microinjection of CPAs than fish Ringer and phosphate buffer saline whereas ¼ artificial sea water was clearly unsuitable. Ethylene glycol was well tolerated by embryos in all developmental stages whereas 1, 2-propylene glycol was suitable only for early embryonic stages. Overall, microinjection was efficient in delivering high loads of CPAs inside whiting embryos more swiftly than previously obtained for this species by immersion-based impregnation protocols. Embryos microinjected with CPAs showed a decrease in embryo nucleation temperature and an increase in chilling tolerance. CPA-microinjected embryos will provide valuable materials to optimize the remaining parameters that are critical for successful cryopreservation such as cooling and warming strategies.

Keywords: Cryoprotective agents; Extender; Japanese whiting embryos; Microinjection; Perivitelline space; Yolk mass.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cryopreservation / methods*
  • Cryoprotective Agents / administration & dosage*
  • Embryo, Nonmammalian / drug effects
  • Embryonic Development / drug effects*
  • Fishes*
  • Microinjections / methods*

Substances

  • Cryoprotective Agents