Real-Time Recursive Fingerprint Radio Map Creation Algorithm Combining Wi-Fi and Geomagnetism

Sensors (Basel). 2018 Oct 10;18(10):3390. doi: 10.3390/s18103390.

Abstract

Fingerprint is a typical indoor-positioning algorithm, which measures the strength of wireless signals and creates a radio map. Using this radio map, the position is estimated through comparisons with the received signal strength measured in real-time. The radio map has a direct effect on the positioning performance; therefore, it should be designed accurately and managed efficiently, according to the type of wireless signal, amount of space, and wireless-signal density. This paper proposes a real-time recursive radio map creation algorithm that combines Wi-Fi and geomagnetism. The proposed method automatically recreates the radio map using geomagnetic radio-map dual processing (GRDP), which reduces the time required to create it. It also reduces the size of the radio map by actively optimizing its dimensions using an entropy-based minimum description length principle (MDLP) method. Experimental results in an actual building show that the proposed system exhibits similar map creation time as a system using a Wi-Fi⁻based radio map. Geomagnetic radio maps exhibiting over 80% positioning accuracy were created, and the dimensions of the radio map that combined the two signals were found to be reduced by 23.81%, compared to the initially prepared radio map. The dimensions vary according to the wireless signal state, and are automatically reduced in different environments.

Keywords: Wi-Fi; fingerprint; geomagnetism; minimum description length principle (MDLP); radio map.